3 dimensional shapes

Three dimensional Shapes

$>$ 3D Shapes are solid objects that have three dimensions.
> The three dimensions are

* length
* width.
* Height

Examples

Polyhedrons

* Polyhedrons are 3D shapes.
* The polyhedrons are also called the Polyhedra.
* Polyhedrons should have straight edges

Examples

Cube Cuboid
Prism
Pyramid

Curved Solids

* The 3D shapes that have curved surfaces are called curved solids.

Examples

Sphere
Cone
Cylinder

Three dimensional shapes

Cuboid
Cube

Prism

Sphere

Cylinder

Pyramid

Properties

There are 3 properties for 3 dimensional shapes. They are
$>$ Faces
$>$ Edges
> Corners or vertices

Faces

Faces are the surfaces on the outside of a shape.
Edges
Edges are the lines where two faces meet.
Corners or vertices
Vertices or corner are where two or more edges meet.

Cube

Back

Faces - 6

Cube

Properties/characteristics:

Edges

> It is a 3-D shape.

Gift box
> It has 8 vertices and 12 edges.

Examples

Dice
Ice cubes

Cuboid

Front

Cuboid

Properties/characteristics:

Book
> It has 8 vertices and 12 edges.

Examples

Bricks, Match box , Book.

Bricks

Match box

Properties/characteristics:
$>$ It is a 3-D shape.

Faces
Edges \longleftarrow
$>$ Two bases lie in upper and lower surfaces in a cylinder.
$>$ It has 3 faces.
$>$ Height is the distance between the two bases.
$>$ It has 2 edges and no vertices

Examples

Straw , cylinder.

Straw

Cylinder

Sphere

Properties/characteristics:

$>$ It is a 3-D shape.

> It has one surface.
$>$ All points on the surface are at the same distance from the centre.
> It has no vertices and edges.

Examples
Laddu, Globe, Ball.

Globe
 Ball

Cone

Properties/characteristics:

$>$ It is a 3-D shape.
$>$ Base of a cone is circular.

$>$ The distance from the top of the cone to the center of the base is called as height.
> The distance from the apex to any point lying on the circumference of base is called as slant height.
> The height and slant height are not equal.

Examples :
Cone ice cream, Party cap.

Party cap

Cone ice cream

3D Shape Properties

Name of the shapes

cube

cuboid
cone

$\mathrm{TSA}=6 \mathrm{a}^{2} \quad$ (sq. units)
LSA $=4 a^{2} \quad$ (sq. units)
Volume $=\mathrm{a}^{3}$
(cu. units)
TSA $=2(1 w+w h+1 h)$ sq. units
LSA $=\mathbf{2 h}(1+\mathbf{w})$ (sq. units)
Volume $=a^{3} \quad$ (cu. units)
TSA $=\pi r(1+r) \quad$ (sq. units)
$\begin{array}{ll}\text { LSA }=\pi r l & \text { (sq. units) } \\ \text { Volume }=(1 / 3) & \pi r^{2} h(c u . ~ u n i t s)\end{array}$
$\begin{array}{ll}\text { LSA }=\pi r l & \text { (sq. units) } \\ \text { Volume }=(1 / 3) & \pi r^{2} h(c u . ~ u n i t s)\end{array}$

TSA $=2 \pi r(h+r)(s q$. units)
Volume $=\pi r^{2} h \quad$ (cu. units)
sphere

Formulas

cylinder

$$
\text { TSA }=4 \pi r^{2} \text { (sq. units) }
$$

Volume $=(4 / 3) \pi r^{3}(\mathrm{cu}$. units $)$

